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Wavelets are the most popular time-scale analysis tool. A well-
known application of wavelets in nuclear magnetic resonance
spectroscopy is water peak extraction/suppression. However, spec-
troscopists are more familiar with frequency than scale. So, from
a spectroscopist point of view, a time-scale analysis tool (i.e.,
wavelets) is not natural and a time-frequency approach would be
much more satisfactory. We explain a time-frequency solution to
this problem based on Gabor analysis. As the two formalisms are
closely linked together we continuously emphasize their similari-
ties and differences. In particular we show that, here, the Gabor
method is as efficient as the wavelet approach, and we give some
examples. Those remarks also apply to other NMR problems
solved previously with the continuous wavelet transform, such as
quantification or dynamical phase correction. © 2000 Academic Press

Key Words: wavelets; Gabor transform; peak suppression; time-
frequency analysis; time-scale analysis.

1. INTRODUCTION

The suppression of the strong signal from water is a prer
uisite for observation of metabolites in biomedical spectros-

copy and for the study of biomolecules in solutions.

Severalpreacquisitionmethods of peak suppression havéeSOIUtion spectroscopy,
been proposedl{4). However, these techniques are not a

signal. Whereas this approach has become very common
general signal processing, its application to NMR spectroscoj
is rather recent. In particular, the wavelet transform has be
applied successfully to a number of standard problems, such
resonance subtraction, quantification, or spectrum rephasi
(14-19 (we refer to these articles for a detailed description ¢
the method). Among these, it yields a good water peak su
pression. The method is fast and reliable, and the results do
depend on any modeling of the resonance peaks.

In the present paper, which can be seen as a sequel to F
(15), we intend to show that equally good results may b
obtained with a time-frequency formalism, namely the Gabc
transform. This is reassuring, in a sense, because the tin
frequency approach is more natural and satisfactory from
spectroscopist point of view. Nevertheless, the two formalisi
being very similar, it is instructive to pursue the analysis wit
both in parallel, and we shall do this in this sequel, emphasi
ing systematically throughout the paper the similarities an

e(a'fferences between the two.

We emphasize that the aim of the present approach is towe
biomedical, even clinical, applications. Compared to high
this means, in general, very shc
|r_elaxation time and equipment that is mostly automatic and n

ways easy to implement on biomedical spectroscopy and iy flexible. As a consequence, time-frequency te_chniqges F
aging systems$?ostacquisitiormethods, based on time domaid" & Very good position, since they are much easier tc_) |mple
data processing, have also been propoSedl). These meth- ment (e_V?r_‘ on a PC) and do not require any sophisticat
ods are easiest to apply when the peak to be suppressed igr&chwsmoq sequence. i

resonance: The low frequency component is isolated and s b‘_l'he paper is divided into three parts. First, we recall th
tracted from the original signal. Recent techniques, such @sic theory Of, WaYe'et a”?' Gat,’or transforms. Next, wats
oversampling combined with digital filterind 2, 13, provide peak suppression 1S desc”Ped in the o approaches, a
extremely sharp filter cutoffs, flat magnitude response in ﬂqgally some examples are given.

passband region, and near-ideal phase linearity. Together they
effectively prevent the folding of undesirable peaks from out-
side the passband. Unfortunately these techniques are only

available on the most recent equipment. In this sequel, we consider only signals of finite energy. Th

A different approach is to replace the standard Fourigiyrier transform of a functioh ¢ L(R) will be denoted by
technique by a combined time-frequency or time-scale repfenamely,

sentation of the signal, such as the wavelet or the Gabor
formalism, and to perform the subtraction on the transformed

2. THE CONTINUOUS WAVELET
AND GABOR TRANSFORMS
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wherew = 27v with v being the frequency (strictly speaking Wavelet
o should be called the pulsation, but we shall stick to “fre- 105
quency” throughout). The signélcan be recovered from its
Fourier transfornt by to the inversion formula, 0
f(x) = x f(w)e'*dx 0
2 ’ 0 200 400 0 02 04 0.6
R Gabor function
100

In the present caséwill represent the NMR signal containing B
a broad peak to be subtracted. fSig either an FID or a spin 0 Q“Q MAMM sol-
echo.

Up to now, the problems of peak suppression or quantifica- _, _
tion and of dynamical phase correction have been addressed 0
only with the continuous wavelet transform (CWT)4( 15. 0 L 40 0 Oérequm%; 06
However, as we shall show below, the same problems can be

treated successfully with the Gabor transform. For the conveFIG. 1. Comparison between wavelet and Gabor functions. (a): Real pa
nience of the reader, we shall thus begin by a quick review (qfftwo dilated and translated versions of the Morlet wavelet (thin kne, 1;
! thick line,a = 0.4); (c): Real part of two modulated and translated version:s

the tWO transforms in parallel. Further information may bgf a Gaussian Gabor function (thin line,= =/20; thick line,0 = #/10). (b)
found in textbooks 17, 18§. (resp. (d)): The modulus of the Fourier transform of the wavelet of (a) (res
Hereafterys denotes the wavelet argithe Gabor function. Gabor function of (c)).
We suppose thak € L*(R) N L*(R) andg € L*(R). So both
y andg have finite energy.
In the wavelet contexiy, , (a € R*, b € R) is a dilated and dadb

. . 1
translated version of a single wavelgt f(x) = Cf Ti(b, @), (X) . [4]
R*XR
Clearly, the admissibility condition [3] implies that(0) = 0,

" a
1 [x—b
ll’b,a(x) = 5 d’( a )
that is, the wavelet must have zero mean. While, strictl
The continuous wavelet transform 6fis simply the scalar speaking, this weaker condition is only necessary, in practice

product off with the collection ofis, .: is also sufficient and usually taken as an admissibility cond
tion. In addition, sincey € L*(R), |y(w)| tends to O when
Ti(b, @) = (W0 ) o — o, So the Fourier transform of the waveleis a bandpass
’ filter.
1 X—Db The well-known Morlet wavelet (see Figs. 1a and 1b),
~a llr( a ) fFOx)dx [1]
: W(x) = exp(—x*(203)) expliw)) [5]
_signa Pw) = 2moexp—(0 — w)20d 2), [6]

o f J(aw)e "“(w)do. 2]

R
is not admissible, strictly speaking, but almost admissible. |

eneral a correction term must be subtracted, bud,if, is
fficiently large (o0, > 5.5), this term is numerically neg
ligible, and the wavelet [5] may safely be used. Nak{ew) is
maximum atw = w,, which means tha};b,a is maximum at the
central frequencw = w,/a. This suggests the identification of
the frequencyw with the inverse scale &/= w/w,. Thus, the

Relation [1] expresses the CWT in the time domain and [2]
its counterpart in the Fourier (frequency) domain.

If the waveletys satisfies the so-called admissibility condi
tion, that is,

- ,du Morlet wavelet can be viewed as a linear bandpass filter who
0<c,= |ir(u)] m <, (8] bandwidth is proportional to &/or to the central frequency. As
R a wavelet must satisfy the admissibility condition, it cannot b

maximum atw = 0. Thus the zero frequency or infinite scale
then the CWT may be inverted and the sighahn be recov- is a limit or critical frequency, corresponding to an infinitely
ered from its CWT coefficients: stretched wavelet.
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In the Gabor context1i8—-20, the reference functiom, ,, is constant, independently of. Hence, the zero frequency does

a frequency modulated and time translated versiog, of not play any particular role in the Gabor transform. As there i
no a priori reference frequency in NMR, this is exactly what a
Goo(X) = g(x — b)e*D b o€ R. spectroscopist is expecting, too.

. . . 3. WATER PEAK SUPPRESSION
The Gabor transform of a signélis the collection of scalar

products off with gs,: The theory of peak suppression with wavelets has bee

widely discussed in several papetg (15, 21, 22 (interesting-

_ ly, the first real application of the CWT in spectroscopy was il
Gi(b, ) = | g(x— b)e'*Pf(x)dx [7] the NMR context 21)).
R Some of these authors, in particular those of ReR),(

noticed that a time-frequency (Gabor) formalism is also a
interesting solution. Here we will mainly focus on the advan
tages of this method from the spectroscopist’s point of view
For better clarity, we treat complex and real signals separate

[
= 2n f 6(e— we HH(ode.  [8]

Here again, the signdl can be recovered from its Gabor3.1. Complex NMR Signals

coefficients, _ ]
Let us define, as usual, a spectral line by the comple

function S(x) = A(X)exp((wXx + ¢)), with A(X) a real and
1 ositive amplitude. We assume thtx) varies slowly and is
(0 = 592 J Gi(b, )Gy, (X)dbdo, 9] o e Y
RxR In the context of NMRA(x) could be a damped exponen-
tial, or a Gaussian, or a more complicated function if the
but now no admissibility condition og is needed, i.e.any disturbing peak was presaturated. In any case, the precise sh
L?(R) function is admissible. The most common Gabor funof the amplitude is irrelevant, and there is no need for a mode

tion is the Gaussian window (see Figs. 1c and 1d): The Gabor transform of the spectral li&ex) reads

9(x) = exp(—x?/(207)) [10] 1

Gsb, ) = - | §(¢ — w)e PA(E — w)e'’d

8(w) = \Zmowexp—w?ad2). [11] (b, w) o JR (¢ — o) (6 — w)e'’dé
Notice that, ifg is the Gaussian window [10] andlthe Morlet 1 iwbrd) | AT oTima
wavelet [5], therG, (b, ») andT; (b, a) coincide fora = wo/w =5 € 6(De AL + o — widd.
(compare the two thin Gabor and wavelet functions in Figs. 1a R
and 1c. [12]

As compared to the wavelet transform, the Gabor transform

has several advantages: ] L i )
Using the Taylor expansion df around its maximumo = 0,
1. This transform is covariant under frequency translation,
i.e., modulation, whereas the wavelet transform is not. This g
means that if g

fi(x) = e*f(x), thenGy(b, w) = Gi(b, ® — (o).
In other words, the Gabor transform of a modulated signal F&Pression [12] becomes
equal to a frequency translation of the Gabor transform of the
signal. This property is most welcome in the present context,

k
since frequency translation is very common in NMR. Gy(b, ®) = S(b)§(ws — w) + /@ P E I)
2. The bandwidth of the analyzing windogy,, does not
depend on the analyzed frequency (compare the spectral widths = )
of ¢y and § in Figs. 1b and 1d. The spectral width ¢f,, d ( ) d A (b). [13]
decreases whem increases, whereas that §f, remains k @s™ @) gp*
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In the same manner, the CWT may be written as Then, the resulting functio®; (b, &) (resp.,T;(b, «,)) is the
spectral line to be subtracted to the signal.
If several spectral lines are involved and are sufficiently fa

- b “ (—ia)k from each other, they can be treated independently. Subtracti
Ts(b, a) = S(b)(aw) + e 3 TR [15] from the full signal does not alter the phase of the signa
k=1 If the lines are very close, one can use a more sophisticat

dk@ d“A method based on the resolution of a linear syst2fn 22.

3.2. Real NMR Signals
The two Equations [13] and [14] are very similar, and in both Now, assume tha(x) is real,
cases the first order in the expansion is proportional to the spectr
line. But the difference occurs in the higher order terms. In [13],
these terms depend on the successive derivativgsabthe same
point, whereas in [14], in addition t¢ there is an additional with A(x) a positive and low-pass function whose bandwidtf
explicit dependence on the scale varialéThus, from a spec- lies within the interval . ). lts Gabor and wavelet
troscopist point of view, handling [13] is much easier. transform are, respectively,

So the Gabor (resp. wavelet) coefficients along the line of
maxima are a good approximation of the spectral line as long

U = RA X (wx + )} = A(X)Cogwx + ¢),

ra:z;l(e);)t'\E/S:ries slowly and the derivative §f(resp.is,,) can be Gub, ©) = % ( J 7@(5 e FA(L — w)eltde
R

sby = 200 oop gy = 2 0T0d g +J §(E — w)e PA(E + wJe e
g(O) l[/(@0) R

16
The iterative algorithm presented i1 22 for the wavelet [16]

case allows us to determine precisely the scale of the spectral sign(a)
line. Getting its time-frequency version is straightforward. Tg(b, a) = yp
Although this algorithm has been known for almost 10 years in
the signal processing community, it may be worthwhile to
summarize it here. It runs as follows.

U Jaw)e "PA(w — w)e'’dw

+ J Ylaw)e "PA(w + ws)eid’dw).
e Initialization step: Sek to zero. Choose R
—a Gabor function (resp. wavelet) like a Gaussian (resp.
a Morlet wavelet with reference frequenay)
—an initialization frequencyé, (resp. an initialization
scalea, With ay = wy/&) in the vicinity of the peak to In order to extract the spectral line with the previous methoc

[17]

suppress one requires the second integrals in [16] and [17] to be zero (
—a precision parameter numerically negligible) around = w.
e Do Thus, the integrals will be equal to zero, if one imposes th

—ComputeG; (b, &) (resp.T((b, «y)) with a discretized additional admissibility conditions og or
version of [8] (resp. [2])

—Use the regularization formula of the iterative algorithm, .
0(w) =0, forow= —w,

1 [ 9 argGi(b, &) #(w) =0, forw=0.
§k+1=TJ Tdb'
.

Then the spectral line is extracted from the time-frequency ¢

In the wavelet case, repla@ (b, &) with T;(b, «,) UMe-scale representations:

and seta,., = wo/é,.y Gu(b
—k=k+1 S(b) =~ 2%{5(“’5)} S(h) = 29%{
while [&, — &4 > e g(0)

T«(b, wO/wS)}
l’l’(wo) .
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FIG. 4. Spectrum of the second signal.
FIG. 2. Spectrum of the first signal.

(line 4) in water. Signals 3 and 5 correspond to impurities il
the commercial grade chemicals used.
We emphasize that these are spectra obtained by dire
The wavelet method is usually illustrated by FID exampleBourier transformation of time-domain signals, without any
(14, 15, 21, 22 One should notice, however, that the amplieorrection. The resolution is comparable to that obtained frol
tudeA(x) of a FID is not a bandlimited low pass function anc&a commercial machine (Bruke. .), which in fact often tacitly
varies very rapidly arounk = 0, growing from 0 to its incorporates various corrections (baselin .). Of course, for a
maximum value. Hence both the Gabor transform and tiperely synthetic spectrum such as the one gived ), Fig. 1,
CWT are prone to border effects around this transient point. oy resolution or shape is possible by definition.
avoid this drawback, the first points of the water peak sup-In fact, the results obtained in these examples are exactly t
pressed FID are usually omitted or set to zero. same with the Gabor and the wavelet suppression metho
In the sequel, we will treat instead spin echo sequencé&ince the former is simpler, it becomes the first choice. As fc
which are much smoother and do not require any special tricke efficiency of the method, we display in Table 1 the are
The first example, Figs. 2 and 3, is a semi-synthetic spamder each peak of the spectrum before and after water st
trum obtained by taking the water signal at different offsets amession. After Gabor/wavelet suppression, the water peaks
different numbers of scans, in order to generate small linegak, whereas the shape and area of the peaks of inter
about 0.25% of the main signal. The second example, Figstefmain the same. So both methods are very effective in su
and 5, corresponds to a mixture of dioxane (line 2) and acetdanacting unwanted large peaks.

4. EXAMPLES

6xlO7 6X107
123 4 5 1 2
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1 1 : 3
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Frequency Frequency

FIG. 3. Spectrum of the first signal after Gabor/wavelet water peak FIG. 5. Spectrum of the second signal after Gabor/wavelet water pec
suppression. suppression.
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TABLE 1 6. M. Derich and X. Hu, Elimination of water signal by postprocessing.
7. P.J. Hore, in “Methods in Enzymology,” (N. Oppenheimer and T. L.
Line number James, Eds.), Vol. 176, Chap. 3, Academic Press, San Diego
(1989).
Example 1 2 3 4 5 8. J. H. J. Leclerc, Distortion-free suppression of the residual water
peak in proton spectra by postprocessing. J. Magn. Reson. B
1 1000.00 2.34 2.80 2.22 2.33 103(1), 64—67 (1994).
1—water suppressed 4.19 2.27 2.79 2.23 2.33 _ o
2 1000.00 11.23 3.12 6.90 554 9. D. Marion, M. Ikura, and A. Bax, Improved solvent suppression in
2—water suppressed 0.06 11.23 312 6.90 554 One- and two-dimensional NMR spectra by convolution of time-

domain data. J. Magn. Reson. 84(2), 425-430 (1989).
10. L. Vanhamme, R. D. Fierro, S. Van Huffel, and R. de Beer, Fast
removal of residual water in proton spectra. J. Magn. Reson.

5. CONCLUSION 132(2), 197-203 (1998).
11. G. Zhu, D. Smith, and Y. Hua, Post-acquisition solvent suppression
In conclusion, water peak suppression with the Gabor trans- by singular-value decomposition. J. Magn. Reson. 124(1), 286-289
form is as effective as with wavelets, and the two are closely (1997).

linked. However, in this context, the Gabor transform and tH&. K. J. Cross, Improved digital filtering technique for solvent sup-

underlying time-frequency formalism appears to be more suit- Pression. J. Magn. Reson. A 101(2), 220-224 (1993).
able than a time-scale formalism. 13. E. E. Hurd, D. Gurr, and N. Sailasuta, Proton spectroscopy without
As there are very few assumptions on the spectral line to be water suppression: The oversampled J-resolved experiment.

. . . . Magn. Reson. Med. 40(3), 343-347 (1998).
suppressed, this technique can also be applied to a S|gln4alH Serai L Senhadii J. D. de Certai 43 L Coatri
. . . . . H. Serrai, L. Senhadji, J. D. de Certaines, and J. L. Coatrieux,
vaUIrEd with a preacquisition water suppression Sequence'Time—domain quantification of amplitude, chemical shift, apparent

T_his methOd_ could a!so be successfully applied to multidimen-  yejaxation time T and phase by wavelet-transform analysis. Appli-
sional experiments like COSY. cation to biomedical magnetic resonance spectroscopy. J. Magn.
As a final remark, we may quote another application of Reson. 124, 20-34 (1997).

wavelets in NMR spectroscopy, namely, dynamical phase cag: D. Barache, J.-P. Antoine, and J.-M. Dereppe, The continuous

rection (L5). This problem too can easily be solved in the wavelet transform, an analysis tool for NMR spectroscopy. J.

time-frequency formalism. Once again, the translation covari- Magn- Reson. 128(1), 1-11 (1997). )

ance (usually called shift invariance) of the method will pleadé- H-j’i"%v 'c-j- Ngda'y""- '-fi;'oclhv G. '-eff""Y' L. Senhadiji, N. Le Tallec,

the spectroscopists, who are naturally more familiar with fre- ¢ J- D- de Certaines, Wavelet transiorm In magnefic resonance
) L . . data processing: Application to subtraction of broad resonances,

quency translgtlon than frequency dilation. This method will be  esojution of overlapping peaks and quantification. J. Magn. Reson.

implemented in the next release of EU software MRUI (Mag- Anal. 3, 79-86 (1997).

netic Resonance User Interface), to be found on the website | paubechies, “Ten Lectures on Wavelets.” CBMS-NSF Regional
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18. B. Torrésani, “Analyse Continue par Ondelettes.” Savoirs actuels,
REFERENCES InterEditions/CNRS Editions (1995).

1. A. Bielecki and M. H. Levitt, Frequency-selective double quantum  19. D. Gabor, Theory of communication. J. Inst. Elec. Eng. 903, 429~
filtered COSY in water. J. Magn. Reson. 82(3), 562-570 (1989). 441 (1946).

2. P. Plateau and M. Guéron, Exchangeable proton NMR without 20. H. G. Feichtinger and T. Strohmer, Eds., “Gabor Analysis and
base-line distorsion, using new strong-pulse sequences. J. Am. Algorithms—Theory and Applications,” Birkhauser, Boston (1998).
Chem. Soc. 104(25), 73107311 (1982). 21. P. Guillemain, R. Kronland-Martinet, and B. Martens, Estimation of

3. R. J. Ogg, P. B. Kingsley, and J. S. Taylor, WET, a T,—and spectral lines with the help of the wavelet transform—Application in
B,—insensitive water-suppression method for in vivo localized 'H N.M.R. spectroscopy, In Y. Meyer, editor, “Wavelets and Applica-
NMR spectroscopy. J. Magn. Reson. B 104, 1-10 (1994). tions—Proceedings of the International Conference Marseille,

4. S. H. Smallcombe, S. L. Patt, and P. A. Keifer, WET solvent sup- France, May 1989,” pp. 38-60, Masson, Paris, and Springer Ver-
pression and its applications to LC NMR and high-resolution NMR lag, Berlin (1991).
spectroscopy. J. Magn. Reson. A 117, 295-303 (1995). 22. N. Delprat, B. Escudié, P. Guillemain, R. Kronland-Martinet, P.

5. C. J. Craven and J. P. Waltho, The action of time-domain convo- Tchamitchian, and B. Torrésani, Asymptotic wavelet and Gabor
lution filters for solvent suppression. J. Magn. Reson. B 106(1), analysis: Extraction of instantaneous frequencies. IEEE Trans.

40-46 (1995). Inform. Theory 38(2), 644-664 (1992).



	1. INTRODUCTION
	2. THE CONTINUOUS WAVELET AND GABOR TRANSFORMS
	FIG. 1

	3. WATER PEAK SUPPRESSION
	FIG. 2

	4. EXAMPLES
	FIG. 3
	FIG. 4
	FIG. 5
	TABLE 1

	5. CONCLUSION
	REFERENCES

