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Wavelets are the most popular time-scale analysis tool. A well-
known application of wavelets in nuclear magnetic resonance
spectroscopy is water peak extraction/suppression. However, spec-
troscopists are more familiar with frequency than scale. So, from
a spectroscopist point of view, a time-scale analysis tool (i.e.,
wavelets) is not natural and a time-frequency approach would be
much more satisfactory. We explain a time-frequency solution to
this problem based on Gabor analysis. As the two formalisms are
closely linked together we continuously emphasize their similari-
ties and differences. In particular we show that, here, the Gabor
method is as efficient as the wavelet approach, and we give some
examples. Those remarks also apply to other NMR problems
solved previously with the continuous wavelet transform, such as
quantification or dynamical phase correction. © 2000 Academic Press

Key Words: wavelets; Gabor transform; peak suppression; time-
requency analysis; time-scale analysis.

1. INTRODUCTION

The suppression of the strong signal from water is a pre
uisite for observation of metabolites in biomedical spec
copy and for the study of biomolecules in solutions.

Severalpreacquisitionmethods of peak suppression h
been proposed (1–4). However, these techniques are not
ways easy to implement on biomedical spectroscopy and
aging systems.Postacquisitionmethods, based on time dom
data processing, have also been proposed (5–11). These meth
ods are easiest to apply when the peak to be suppressed
resonance: The low frequency component is isolated and
tracted from the original signal. Recent techniques, suc
oversampling combined with digital filtering (12, 13), provide
extremely sharp filter cutoffs, flat magnitude response in
passband region, and near-ideal phase linearity. Togethe
effectively prevent the folding of undesirable peaks from
side the passband. Unfortunately these techniques are
available on the most recent equipment.

A different approach is to replace the standard Fo
technique by a combined time-frequency or time-scale re
sentation of the signal, such as the wavelet or the G
formalism, and to perform the subtraction on the transfor

1 Currently supported by EC Training and Mobility of Researchers Con
RB-FMRX-CT970160.
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signal. Whereas this approach has become very comm
general signal processing, its application to NMR spectros
is rather recent. In particular, the wavelet transform has
applied successfully to a number of standard problems, su
resonance subtraction, quantification, or spectrum reph
(14–16) (we refer to these articles for a detailed descriptio
the method). Among these, it yields a good water peak
pression. The method is fast and reliable, and the results d
depend on any modeling of the resonance peaks.

In the present paper, which can be seen as a sequel t
(15), we intend to show that equally good results may
obtained with a time-frequency formalism, namely the Ga
transform. This is reassuring, in a sense, because the
frequency approach is more natural and satisfactory fro
spectroscopist point of view. Nevertheless, the two formal
being very similar, it is instructive to pursue the analysis w
both in parallel, and we shall do this in this sequel, emph
ing systematically throughout the paper the similarities
differences between the two.

We emphasize that the aim of the present approach is to
biomedical, even clinical, applications. Compared to h
resolution spectroscopy, this means, in general, very
relaxation time and equipment that is mostly automatic an
very flexible. As a consequence, time-frequency technique
in a very good position, since they are much easier to im
ment (even on a PC) and do not require any sophistic
preacquisition sequence.

The paper is divided into three parts. First, we recall
basic theory of wavelet and Gabor transforms. Next, w
peak suppression is described in the two approaches
finally some examples are given.

2. THE CONTINUOUS WAVELET
AND GABOR TRANSFORMS

In this sequel, we consider only signals of finite energy.
Fourier transform of a functionf { L 2(R) will be denoted b
f̂, namely,

f̂~v! 5 E
R

f~ x!e2ivxdx v { R,ct
1090-7807/00 $35.00
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190 ANTOINE, CORON, AND DEREPPE
wherev 5 2pn with n being the frequency (strictly speaki
v should be called the pulsation, but we shall stick to “
quency” throughout). The signalf can be recovered from
Fourier transform̂f by to the inversion formula,

f~ x! 5
1

2p E
R

f̂~v!eivxdx.

In the present case,f will represent the NMR signal containi
a broad peak to be subtracted. Sof is either an FID or a sp
echo.

Up to now, the problems of peak suppression or quant
tion and of dynamical phase correction have been addr
only with the continuous wavelet transform (CWT) (14, 15).
However, as we shall show below, the same problems c
treated successfully with the Gabor transform. For the co
nience of the reader, we shall thus begin by a quick revie
the two transforms in parallel. Further information may
found in textbooks (17, 18).

Hereafterc denotes the wavelet andg the Gabor function
We suppose thatc { L 1(R) ù L 2(R) andg { L 2(R). So both
c andg have finite energy.

In the wavelet context,c b,a (a { R*, b { R) is a dilated an
translated version of a single waveletc:

cb,a~ x! 5
1

a
cSx 2 b

a D .

The continuous wavelet transform off is simply the scala
roduct off with the collection ofc b,a:

Tf ~b, a! 5 ^cb,a, f &

5
1

a E
R

cSx 2 b

a D f~ x!dx [1]

5
sign a

2p E
R

ĉ~av!e2ivbf̂~v!dv. [2]

Relation [1] expresses the CWT in the time domain and [
its counterpart in the Fourier (frequency) domain.

If the waveletc satisfies the so-called admissibility con
tion, that is,

0 , cc 5 E
R

uĉ~u!u 2
du

uuu , `, [3]

hen the CWT may be inverted and the signalf can be recov
red from its CWT coefficients:
-

a-
ed

be
e-
of
e

is

f~ x! 5
1

cc
E

R* 3R

Tf ~b, a!cb,a~ x!
dadb

a
. [4]

Clearly, the admissibility condition [3] implies thatĉ(0) 5 0,
that is, the wavelet must have zero mean. While, str
speaking, this weaker condition is only necessary, in pract
is also sufficient and usually taken as an admissibility co
tion. In addition, sincec { L 2(R), uĉ(v)u tends to 0 whe
v3 `. So the Fourier transform of the waveletc is a bandpas
filter.

The well-known Morlet wavelet (see Figs. 1a and 1b),

c~ x! 5 exp~2x2/~2s 0
2!!exp~iv0x! [5]

ĉ~v! 5 Î2ps0exp~2~v 2 v0!
2s 0

2/ 2!, [6]

is not admissible, strictly speaking, but almost admissibl
general a correction term must be subtracted, but ifv0s0 is
sufficiently large (v0s0 . 5.5), this term is numerically ne-
ligible, and the wavelet [5] may safely be used. Now,ĉ(v) is
maximum atv 5 v0, which means thatĉ b,a is maximum at th
central frequencyv 5 v 0/a. This suggests the identification
the frequencyv with the inverse scale 1/a 5 v/v 0. Thus, the
Morlet wavelet can be viewed as a linear bandpass filter w
bandwidth is proportional to 1/a or to the central frequency. A
a wavelet must satisfy the admissibility condition, it canno
maximum atv 5 0. Thus the zero frequency or infinite sc
is a limit or critical frequency, corresponding to an infinit
stretched wavelet.

FIG. 1. Comparison between wavelet and Gabor functions. (a): Rea
of two dilated and translated versions of the Morlet wavelet (thin line,a 5 1;
thick line, a 5 0.4); (c): Real part of two modulated and translated vers
of a Gaussian Gabor function (thin line,v 5 p/20; thick line,v 5 p/10). (b)
(resp. (d)): The modulus of the Fourier transform of the wavelet of (a) (
Gabor function of (c)).
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191WATER PEAK SUPPRESSION
In the Gabor context (18–20), the reference function,gb,v, is
frequency modulated and time translated version ofg,

gb,v~ x! 5 g~ x 2 b!eiv~ x2b! b, v { R.

The Gabor transform of a signalf is the collection of scala
products off with gb,v:

Gf ~b, v! 5 E
R

g~ x 2 b!eiv~ x2b!f~ x!dx [7]

5
1

2p E
R

ĝ~j 2 v!e2ijbf̂~j!dj. [8]

Here again, the signalf can be recovered from its Gab
coefficients,

f~ x! 5
1

2pi gi 2 E
R3R

Gf ~b, v! gb,v~ x!dbdv, [9]

but now no admissibility condition ong is needed, i.e.,any
L 2(R) function is admissible. The most common Gabor fu-
tion is the Gaussian window (see Figs. 1c and 1d):

g~ x! 5 exp~2x2/~2s 0
2!! [10]

ĝ~v! 5 Î2ps0exp~2v 2s 0
2/ 2!. [11]

Notice that, ifg is the Gaussian window [10] andc the Morlet
wavelet [5], thenGf (b, v) andTf (b, a) coincide fora 5 v 0/v
(compare the two thin Gabor and wavelet functions in Fig
and 1c.

As compared to the wavelet transform, the Gabor trans
has several advantages:

1. This transform is covariant under frequency transla
i.e., modulation, whereas the wavelet transform is not.
means that if

f1~ x! 5 eiz0xf~ x!, thenGf1~b, v! 5 Gf ~b, v 2 z0!.

In other words, the Gabor transform of a modulated sign
equal to a frequency translation of the Gabor transform o
signal. This property is most welcome in the present con
since frequency translation is very common in NMR.

2. The bandwidth of the analyzing windowgb,v does no
depend on the analyzed frequency (compare the spectral w
of ĉ and ĝ in Figs. 1b and 1d. The spectral width ofĉ b,a

decreases whena increases, whereas that ofĝb,v remains
a

m

,
is

is
e
t,

ths

constant, independently ofv. Hence, the zero frequency do
not play any particular role in the Gabor transform. As the
no a priori reference frequency in NMR, this is exactly wha
spectroscopist is expecting, too.

3. WATER PEAK SUPPRESSION

The theory of peak suppression with wavelets has
widely discussed in several papers (14, 15, 21, 22) (interesting
ly, the first real application of the CWT in spectroscopy wa
the NMR context (21)).

Some of these authors, in particular those of Ref. (22),
oticed that a time-frequency (Gabor) formalism is also

nteresting solution. Here we will mainly focus on the adv
ages of this method from the spectroscopist’s point of v
or better clarity, we treat complex and real signals separ

.1. Complex NMR Signals

Let us define, as usual, a spectral line by the com
unction S( x) 5 A( x)exp(i (v sx 1 f)), with A( x) a real and
positive amplitude. We assume thatA( x) varies slowly and i
analytic.

In the context of NMR,A( x) could be a damped expone
tial, or a Gaussian, or a more complicated function if
disturbing peak was presaturated. In any case, the precise
of the amplitude is irrelevant, and there is no need for a m

The Gabor transform of the spectral lineS( x) reads

GS~b, v! 5
1

2p E
R

ĝ~j 2 v!e2ijbÂ~j 2 vs!e
ifdj

5
1

2p
ei ~vb1f! E

R

ĝ~z!e2izbÂ~z 1 v 2 vs!dz.

[12]

Using the Taylor expansion ofĝ around its maximumv 5 0,

ĝ~z! 5 ĝ~0! 1 O
k51

`
z k

k!

dkĝ

dz k ~0!,

xpression [12] becomes

GS~b, v! 5 S~b!ĝ~vs 2 v! 1 ei ~vsb1f! O
k51

` ~2i ! k

k!

3
dkĝ#

dv k ~vs 2 v!
dkA

dbk ~b!. [13]
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In the same manner, the CWT may be written as

TS~b, a! 5 S~b!ĉ# ~avs! 1 ei ~vsb1f! O
k51

` ~2ia! k

k!

3
dkĉ#

dv k ~avs!
dkA

dbk ~b!. [14]

he two Equations [13] and [14] are very similar, and in b
ases the first order in the expansion is proportional to the sp
ine. But the difference occurs in the higher order terms. In
hese terms depend on the successive derivatives ofg, at the sam
oint, whereas in [14], in addition toc there is an addition

explicit dependence on the scale variablea. Thus, from a spec
troscopist point of view, handling [13] is much easier.

So the Gabor (resp. wavelet) coefficients along the lin
maxima are a good approximation of the spectral line as
asA( x) varies slowly and the derivative ofĝ (resp.ĉ 0,a) can be
neglected:

S~b! <
GS~b, vs!

ĝ~0!
, resp.,S~b! <

TS~b, v0/vs!

ĉ~v0!
. [15]

The iterative algorithm presented in (21, 22) for the wavele
case allows us to determine precisely the scale of the sp
line. Getting its time-frequency version is straightforwa
Although this algorithm has been known for almost 10 yea
the signal processing community, it may be worthwhile
summarize it here. It runs as follows.

● Initialization step: Setk to zero. Choose
—a Gabor function (resp. wavelet) like a Gaussian (r

a Morlet wavelet with reference frequencyv0)
—an initialization frequencyj0 (resp. an initializatio

scalea0 with a0 5 v0/j0) in the vicinity of the peak t
suppress

—a precision parametere
● Do

—ComputeGf (b, j k) (resp.Tf (b, a k)) with a discretize
version of [8] (resp. [2])

—Use the regularization formula of the iterative algorit

jk11 5
1

T E
T

 arg~Gf ~b, jk!!

b
db.

In the wavelet case, replaceGf (b, j k) with Tf (b, a k)
and seta k11 5 v 0/j k11

—k 5 k 1 1
hile uj k 2 j k21u . e.
h
tral
],

of
g

tral
.
in
o

p.

,

Then, the resulting functionGf (b, j k) (resp.,Tf (b, a k)) is the
spectral line to be subtracted to the signal.

If several spectral lines are involved and are sufficiently
from each other, they can be treated independently. Subtra
[15] from the full signal does not alter the phase of the sig
If the lines are very close, one can use a more sophisti
method based on the resolution of a linear system (21, 22).

3.2. Real NMR Signals

Now, assume thatS( x) is real,

S~ x! 5 R$A~ x!exp~i ~vsx 1 f!!% 5 A~ x!cos~vsx 1 f!,

with A( x) a positive and low-pass function whose bandw
lies within the interval (2vs, vs). Its Gabor and wavel
transform are, respectively,

GS~b, v! 5
1

4p S E
R

ĝ~j 2 v!e2ijbÂ~j 2 vs!e
ifdj

1 E
R

ĝ~j 2 v!e2ijbÂ~j 1 vs!e
2ifdjD

[16]

TS~b, a! 5
sign~a!

4p S E
R

ĉ~av!e2ivbÂ~v 2 vs!e
ifdv

1 E
R

ĉ~av!e2ivbÂ~v 1 vs!e
2ifdvD .

[17]

In order to extract the spectral line with the previous met
one requires the second integrals in [16] and [17] to be zer
numerically negligible) aroundv 5 vs.

Thus, the integrals will be equal to zero, if one imposes
additional admissibility conditions ong or c:

ĝ~v! 5 0, for v # 2vs,

ĉ~v! 5 0, for v # 0.

Then the spectral line is extracted from the time-frequenc
time-scale representations:

S~b! < 2RHGS~b, vs!

ĝ~0! J S~b! < 2RHTS~b, v0/vs!

ĉ~v0!
J .
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4. EXAMPLES

The wavelet method is usually illustrated by FID exam
(14, 15, 21, 22). One should notice, however, that the am
tudeA( x) of a FID is not a bandlimited low pass function a
varies very rapidly aroundx 5 0, growing from 0 to its
maximum value. Hence both the Gabor transform and
CWT are prone to border effects around this transient poin
avoid this drawback, the first points of the water peak
pressed FID are usually omitted or set to zero.

In the sequel, we will treat instead spin echo seque
which are much smoother and do not require any special

The first example, Figs. 2 and 3, is a semi-synthetic s
trum obtained by taking the water signal at different offsets
different numbers of scans, in order to generate small
about 0.25% of the main signal. The second example, Fi
and 5, corresponds to a mixture of dioxane (line 2) and ace

FIG. 2. Spectrum of the first signal.
ea
s
-

e
o
-

s,
k.
c-
d

es
. 4
ne

(line 4) in water. Signals 3 and 5 correspond to impuritie
the commercial grade chemicals used.

We emphasize that these are spectra obtained by
Fourier transformation of time-domain signals, without
correction. The resolution is comparable to that obtained
a commercial machine (Bruker . . .), which in fact often tacitl
incorporates various corrections (baseline . . .). Of course, for
purely synthetic spectrum such as the one given in (12), Fig. 1,
any resolution or shape is possible by definition.

In fact, the results obtained in these examples are exact
same with the Gabor and the wavelet suppression met
Since the former is simpler, it becomes the first choice. A
the efficiency of the method, we display in Table 1 the
under each peak of the spectrum before and after water
pression. After Gabor/wavelet suppression, the water pea
weak, whereas the shape and area of the peaks of in
remain the same. So both methods are very effective in
tracting unwanted large peaks.

FIG. 4. Spectrum of the second signal.
peak
FIG. 3. Spectrum of the first signal after Gabor/wavelet water p
uppression.
k FIG. 5. Spectrum of the second signal after Gabor/wavelet water
suppression.
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5. CONCLUSION

In conclusion, water peak suppression with the Gabor t
form is as effective as with wavelets, and the two are clo
linked. However, in this context, the Gabor transform and
underlying time-frequency formalism appears to be more
able than a time-scale formalism.

As there are very few assumptions on the spectral line
suppressed, this technique can also be applied to a
acquired with a preacquisition water suppression sequ
This method could also be successfully applied to multidim
sional experiments like COSY.

As a final remark, we may quote another application
wavelets in NMR spectroscopy, namely, dynamical phase
rection (15). This problem too can easily be solved in
time-frequency formalism. Once again, the translation co
ance (usually called shift invariance) of the method will ple
the spectroscopists, who are naturally more familiar with
quency translation than frequency dilation. This method wi
implemented in the next release of EU software MRUI (M
netic Resonance User Interface), to be found on the we
(http://www.mrui.uab.es/mrui/mruiHomePage.html).
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